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ABSTRACT 

In Chemical Graph Theory, the topological indices are applied to measure the chemical characteristics of chemical compounds. 

To the continuity of Kulli’s[21] work on Revan index and by Illic´ and Milosavljevic[9] on weighted vertex szeged index, we 

introduce the Revan weighted szeged index of graph, which is an another weighted version of szeged index.  We present the exact 

formula of Revan weighted szeged index of corona product of two connected graphs in terms of other graph invariants including 

the szeged index, first Zagreb index and second  Zagreb  index.   Finally,  we  apply  this  result  to  compute  the  exact  value  of  

Revan weighted szeged indices for some molecular graphs. 
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1   Introduction 

All the graphs considered in this paper are simple.  A vertex  x  ∈ V(G)  is said to be equidistant from the edge  e = uv  of  G  if  

dG(u, x) = dG(v, x),  where  dG(u, x)  denotes the distance between u  and  x  in  G;  otherwise,  x  is a nonequidistant vertex.  The 

degree of a vertex x  ∈  V(G)  is denoted by  dG(x). 

          For an edge  uv  =  e  ∈  E(G),  the number of vertices of  G  whose distance to the vertex  u is less than the distance to 

the vertex  v  in  G  is denoted by  en G

u
 = nu(e, G);  analogously,  enG

v
           =nv(e, G)  is the number of vertices of  G  whose 

distance to the vertex  v  in  G  is less thanthe distance to the vertex  u;  the vertices equidistant from both the ends of the edge  e = 

uv  are not counted. 

The two topological indices, namely, the szeged index and weighted szeged index of G, denoted by  Sz(G)  and  Szw(G),  

respectively, are defined as follows:  

 
Graph operations play an important role in the study of graph decompositions into isomorphic subgraphs.    It  is  well  known  

that  many  graphs  arise  from  simpler  graphs  via  various  graph operations  and  one  can  study  the  properties  of  smaller  

graphs  and  deriving  with  it  some information about larger graphs. Hence it is important to understand how certain invariants of 

such product graphs are related to the corresponding invariants of the original graphs.The corona of two graphs was first introduced 

by Frucht and Harary in[8].  Let G and H be two simple graphs.  The corona product  G ◦ H,  see Fig. 1, is obtained by taking one 

copy of  G  and  |V(G)|  copies of  H; and by joining each vertex of the  i -th copy of  H  to the  i -th vertex of  G,  where  1 ≤ i ≤ 

|V(G)| . 
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Fig.2 The corona product of two graphs 
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Corona product of graphs appears in chemical literature as plerographs of the hydrogen suppressed molecular graphs known as 

kenographs see [24] more information.  Different topological indices such as Wiener - type indices[4] , Szeged, vertex PI, first and 

second Zagreb indices [33], weighted PI  index  [26],  weighted  szeged  index  [27],  Rewan  weighted  PI  index  [16]  etc.   of  

the  corona product of two graphs have already been studied. For more application refer [33, 1, 32, 4]. 

 

The Szeged index studied by Gutman [10], Gutman and Dobrynin [11] and Khadikar et. al. [15] is closely related to the Wiener 

index of a graph. Basic properties of Szeged index and its analogy to the Wiener index are discussed by Klavzˇar et al.[14] . It is 

proved that for a tree  T  the Wiener index of  T  is equal to its Szeged index. Ashrafi et. al. [25] have explained the differences 

between Szeged and Wiener indices of graphs.  The mathematical properties and chemical applications of Szeged index are well 

studied by Dobrynin et. al. [7], Gutman et. al. [12] and Randic et. al. [29]. Recently Pisanski and Randic [28] studied the measuring 

network bipartivity using Szeged index 

 

    Weighted PI index and weighted szeged index of graph  G  has been introduced by Ilic´  and Milosavljevic [9] and obtained 

the upper and lower bounds for weighted vertex PI index of graph, for more results see[2, 21, 3, 5, 17, 18, 34, 27].  Kandan et 

al.[16] recently introduced the Revan weighted PI index of graph and obtained the exact formula for corona product of graphs,  

also derived the exact value for some standard graphs.  In this paper, the exact formula for the Revan weighted szeged index of 

corona product of two connected graphs is obtained and using this results we deduced exact value of some important classes of 

graphs. 

 

   Let  ∆(G) (δ(G))  denote the maximum (minimum) degree among the vertices of  G.  The revan vertex  degree  of  a  vertex  u  

in  G  is  defined  as  rG(u)  =   ∆(G) + δ(G) − dG(u).  In[21]  Kulli introduced first and second Revan indices of a graph G are 

respectively defined as 

 

                and           

 

 and derived the exact value for the various molecular structure. For more of its applications refer [22, 23].  Motivated by the 

invariants like weighted szeged indices and Revan indices,we define here the Revan Weighted  Szeged index of a graph G as 

follows: 
 

                        nu(e, G)nv(e, G)                                (1.1) 

 

 

To  connect  the  Revan  weighted  szeged  index  with  the  well  known  indices  called  first 

 

Zagreb index and second Zagreb index which are defined by )(1 GM 



Guve

GG vdud ))()((
 

 

and )(2 GM 
 Guve

GG vdud )()(  . The  edge  a - Zagreb  index  of  G   is  defined  as 

 

)(GZ a 



Guve

a

G

a

G vdud ))()((  It is not hard to see that Z1(G) = M1(G), where  M1(G) is the first Zagreb index of  G.  

The  edge (a, b) - Zagreb index  of  G  is defined as 

 )(, GZ ba ))()()()(( a

G

b

G

Guve

b

G

a

G vdudvdud 


. The Zagreb indices are found to have appilications in QSPR and 

QSAR studies as well, see [6]. 

 

2  Revan weighted Szeged index of the Corona product of graphs 
 

In this section,we compute the Revan weighted szeged index of the corona product of two graphs. For our convenience,we 

partition the edge set of  G ◦H into three sets. E1= {e ∈E(G ◦ H)|e ∈ E(Hi), 1 ≤ i ≤ n},   E2  = {e ∈ E(G ◦ H)|e ∈ E(G)}  and  E3  = 

{e ∈ E(G ◦ H)|e = uv, u ∈ V(Hi), 1 ≤ i ≤ n, v ∈ V(G)}.  It is easy to see that  E1,   E2   and  E3   are partition of the edge set of  G ◦ 

H  and also  |E1| = |V(G)||E(G)|,   |E2| = |E(G)|  and  |E3| = |V(G)||V(H)|.  Let te(G)  denote the number of triangles containing an 

edge  e  in  G.  The following lemma is used in the proof of the main theorem of this section. 

 

Lemma 2.1.  [26] Let  G  and  H  be graphs, then  

1.   |V(G ◦ H)| = |V(G)|(1 + |V(H)|)  and  |E(G ◦ H)| = |E(G)| + |V(G)|(|V(H)| + |E(H)|). 

2.    (a)  If  e = uv ∈ E1,  then  dG◦H(u) = dH(u) + 1  and  dG◦H(v) = dH(v) + 1. 

(b)  If  e = uv ∈ E2,  then  dG◦H(u) = dG(u) + |V(H)|  and  dG◦H(v) = dG(v) + |V(H)|. 

(c)  If  e   =   uv   ∈  E3,  and  u   ∈   V(H), v   ∈   V(G),  then  dG◦H(u)   =   dH(u) + 1  and dG◦H(v) = dG(v) + |V(H)|. 

(d)   ∆(G ◦ H) =∆ (G) + |V(H)|  and  δ(G ◦ H) = δ(H) + 1 
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Theorem 2.2. Let  G  be connected graph of order  n  and size  p.  If  H  is a graph of order  m  and size  q,  then 

 

4pq + (H)nM + pm) +1)(qn - 1) + 2(n(m-      
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Proof.  As in the beginning of this section, we partition the edges of  G ◦ H  into three sets  E1, E2 and  E3.  First we compute 

for the set  E1.  Let  e = uv ∈ E1   and let  x  V(H)  is not adjacent to both  u  and  v  in  H.  Then  x  is equidistant to  e  in  G ◦ H,  

that is,  dG◦H(x, u) = dG◦H(x, v) = 2. If   x  is  adjacent  to  both  u  and  v  in   H,  then   x  is  an  equidistant  to  e  in  G  ◦  H.   

Hence  en HG

u

 =dH(u)−te(H) and  en HG

v

 =dH(v)−te(H) 
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Next we compute for the set  E2.  Let  e = uvE2   and let  xTG◦H(e; u).  Then all the vertices of the copy of  H  attached to  

x  are in  TG◦H(e; u).  Since |v(H)| = m, )(en HG

u

  = (m + 1) ))(( enG
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Finally, for the set E3.  Let u1, u2, . . . , ur    be  the  vertices  adjacent  to  u  in   H.  Then uj    is equidistant to e in  G ◦ H,  for  

j = 1, 2, . . . , r.  On the other hand every vertex of G ◦ H  other than u1, u2, . . . , ur are in  TG◦H(e;v).  Hence )(en HG
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   =   nm(n(m + 1) − 1)(2(△(G)+δ(H)) + m + 1) − 2qn(2(△(G)+δ(H) + m + 1) 
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Now we shall obtain )( HGSzr  . By the definition of )( HGSzr   
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Using the theorem 2.2, we have the following corollaries 

 

Corollary 2.3.  If  G  is a connected graph of order  n  and  H  is a  r  regular graph with order  m then 
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S z(Kn) =  
n(n−1)

 

M2(Kn) =  
n(n−1)  

 

 

                           r) + m + (G) (2( n − n ))2( r )(2 Hte
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[2(∆(G) + r + 1)Sz(G) − Szw(G)] 

+ (nm(n(m + 1) − 1) − 2qn)(2(∆(G) + r) + m + 1) 

− 2(n(m + 1) − 1)(qn + pm) + n(2rq) + 4pq. 

 

     For a triangle free graph H,  te(H) = 0. 

 

Corollary 2.4.  Let  G  be connected graph of order  n  and size  p.  If  H  is a triangle free graph of order  m  and size  q  then 

  Szr(G ◦ H)    =         2n(∆(G) + m + δ(H))M2(H)  )(1,2 HZn   
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2
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Corollary 2.5.  Let  G  be connected graph of order  n  and size  p.  If  H  is a triangle free and  r regular graph of order  m  

and size  q,  then 
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3. Revan weighted szeged indices of some special classes of graphs 

   For a cycle Cn, path  Pn   and complete graph  Kn   on  n  vertices, it is known that Sz(Cn)=  

When n is even, and 
4

1)-n(n 2 otherwise and 
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; see[19].Also it can be easily seen that Szw(Cn) = n3   when n  is 

even, and n(n − 1)2 otherwise, 
3
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, 

2        and Szw(Kn) = n(n − 1)2. 

Further  it  is  known  that  the  Zagreb  indices  on  path  and  cycles  are  M1(Cn)  =  4n,  n  ≥  3, 

M1(P1) = 0,  M1(Pn) = 4n − 6,  n > 1,  M1(Kn) = n(n−1)2  and  M2(Pn) = 4(n−2),  M2(Cn) = 4n, 

2 

2      . 

Its  a  direct  consequence  from  the  definition  of  Revan  weighted  szeged  index  for  the cycle, 

path and complete graph is 
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For a given graph G,  its  t− fold bristled graph  Brst(G)  is obtained by attaching  t  vertices of degree 1 to each vertex of  G.  

This graph can be represented as the corona product of G  and complement of a complete graph on  t  vertices. The t − fold bristled 

graph of a given graph is also known as its  t − thorny graph.  

 

Example 1. Let G be a graph with  n  vertices. Then 

 

      Szr (
tKG )    =     (t + 1)

2 
[2 ∆(G) + m)Sz(G) − Szw(G)] + ( nt (n(t + 1) − 1))(2 ∆(G) + t + 1) 

− 2(n(t + 1) − 1)(pt) 

 

The t − fold bristled graph of Pn   and  Cn   are shown in Fig.2.  From the above formula, the Revan weighted szeged indices of 

these graphs can easily be computed. 
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A special corona graph  Cn ◦ K1   is called a  sunlet  graph on  2n  vertices. 

 

 
 

 

Example 2. Let H be a graph with m vertices. Then 
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       The  star  graph  S m+1  on  m + 1  vertices is the corona product of  K1  and  Km . The  f an  graph Fm+1 and the  wheel  

graph  Wm+1   on  m + 1  vertices are also corona product of  K1   and  Pm  andCm, seeFig.3.From the above formula the Revan 

weighted szeged indices of these graphs are obtained. 

 

 

 

 

)( 1 tr PKSz   

 

)( 1 tr CKSz   

 

For a given graph  H  the graph  K2 ◦ H  is called the  bottleneck  graph of  H.  The Revan weighted Szeged index of this graph 

can easily be obtained from Example 2 

Example 3. Let H  be a graph with  m  vertices. Then 

 

Szr(K2 ◦ H) = 4(m + δ(H) + 1)M2(H) 
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[2(δ(H) + 1)] + (2m(2m + 1) − 4q)(2δ(H)+m+ 1) 

− 2(2m + 1)(2q + m) + 2M1(H) + 4q. 

. 

In  particular,  the  Revan  weighted  Szeged  index  of  the  bottleneck  graph  of  Pm   is  equal  to 

Szr(K2 ◦ Pt) = 2(t3 + 7t2 − 14t + 2). 

)1()( 2

1  ttKKSz tr 
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Fig.2 The t− fold bristled graph of Pn and Cn 

 

 

Fig. 3 Fan graph and wheel graph 

i=1 
Let  {Gi}

n
 be a set of finite pairwise disjoint graphs with  vi   ∈   V(Gi).  The bridge   graph

 
with  respect  to  the  

 

obtained  from  the  graphs  G1, G2, . . . , Gn   by  connecting  the  vertices  vi   and  vi+1   by  an  edge for all  i = 1, 2, . 

. . , n − 1,  see Fig.4. 

 

             v1                        v2                   v3                                        vn 

 

 

 

       G1                    G2                   G3                                      Gn 

 

 

 

 

 

Fig.4 The bridge graph 
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We define     (n times) which is the special case of the bridge graph. For example, let 

  be the path on  n  vertices  v1, v2, . . . , vn,  define  Bn  = Gn(P3, v2),  see Fig.5(Polyethene when  n  =  4 ).  As another 

example, let  Ck   be the cycle with  k  vertices and define  Tn  = Gn(Ck, v1),  see Fig.6 (when  k = 3  and  n = 5 ). As a final 

example , define the bridge graph  Jn,m+1  = Gn(Wm+1, v1),  where  Wm+1   is the wheel graph on  m + 1  vertices  v1, v2, . . . , 

vm+1 such that  deg(v1) = m  and  deg(vi) = 3,  i = 1, 2, . . . , m + 1.  By the definition of corona product, Bn  = Pn ◦ ,  Tn,3  = Pn 

◦ K2   and  Jn,m+1  = Pn ◦ Cm. 

 

 

 

 

 

 

 

 

Fig.5 The graph  Bn 

 

 

 

 

 

 

Fig.6 The graph  Tn,3 

 

 

Example 4. Using Theorem 2.2, we obtain the Revan szeged indices of the following graphs. 

 

1.  S zr(Bn) = 3n3 + 30n2 + 17n − 22. 

2. S zr(Tn,3) = 9n3 + 36n2 − 4n − 17. 

3. S zr(Jn,m+1) = m(n + 5nm − 6) + (m + 1)2(n − 1)(n2 + n + 2) + nm(m + 1)(nm + 5n + 2),  for  m >3. 
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